The Improvement of Convergence Rate in n-Queen Problem Using Reinforcement Learning

نویسندگان

  • Soo-Yeon Lim
  • Ki-Jun Son
چکیده

The purpose of reinforcement learning is to maximize rewards from environment, and reinforcement learning agents learn by interacting with external environment through trial and error. Q-Learning, a representative reinforcement learning algorithm, is a type of TD-learning that exploits difference in suitability according to the change of time in learning. The method obtains the optimal policy through repeated experience of evaluation of all state-action pairs in the state space. This study chose n-Queen problem as an example, to which we apply reinforcement learning, and used Q-Learning as a problem solving algorithm. This study compared the proposed method using reinforcement learning with existing methods for solving n-Queen problem and found that the proposed method improves the convergence rate to the optimal solution by reducing the number of state transitions to reach the goal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

Two Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate

Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...

متن کامل

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...

متن کامل

Speedy Q-Learning: A Computationally Efficient Reinforcement Learning Algorithm with a Near-Optimal Rate of Convergence∗

We consider the problem of model-free reinforcement learning (RL) in the Markovian decision processes (MDP) under the probably approximately correct (PAC) model. We introduce a new variant of Q-learning, called speedy Q-learning (SQL), to address the problem of the slow convergence in the standard Q-learning algorithm, and prove PAC bounds on the performance of this algorithm. The bounds indica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005